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Variational Analysis of Dielectrically Loaded
Multidepth Corrugated Waveguides

MARKKU I. OKSANEN

Abstract —The propagation behavior in a mtdtidepth corrugated wave-

gnide is analyzed. The anatysis is based on the theory of nonstandard

eigenmhres and variational methods. This method is tested for an empty

dual-depth corrugated guide, the resnfts of which have been previously

calculated in the literature by using surface impedance and space fmrmonic

methods. These methods are summarized here. Also, space harmonic

fornndas are rede~ved in the form where the fundamental surface admit-

tance component is separated from the higher order terms. It is seen that,

with elementary triaf functions, very accurate dispersion relations can be

obtained by the variational method. Encouraged by this, the method is then

extended for a tridepth guide operating in tfuee different frequency bands,

cod for dielectrically loaded dmsf- and tridepth guides. The latter compo-

nents may hold considerable promise because of their simpler fabrication

technique.

I. INTRODUCTION

sINGLE- AND dual-depth corrugated horns or wave-

guides have found applications in cases where pattern

symmetry related to low cross-polarization is required. In a

single-depth horn, these characteristics can be realized at a

certain frequency band around the balanced frequency of

the horn. At that frequency the depth of the corrugation

slot is approximately a quarter of the wavelength. When

the corrugation consists of two different slot depths, i.e. a

dual-depth horn, these requirements can be met in two

separate frequency bands. The ratio of the depths of the

two slots, and hence the ratio of the operating bands, can

vary between 1:1.3 and 1:2.0 [1].

Since the invention of the dual-depth corrugated guide,

various theoretical methods have been introduced to ana-

lyze wave propagation and radiation characteristics of such

a horn. The first one [2] is based on an average wall

admittance, an assumption which can be justified as an

approximation if the depths of the slots do not differ much

from each other. In this method, relation between the

fields in the adjacent slots are not taken into account. This

is valid also for the surface impedance method, which

assumes infinitely thin corrugations [3]. Including field

coupling between the slots and realistic corrugation dimen-

sions requires a space harmonic analysis [1], [4]–[7]. In this

method the fields in the central propagation region are
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represented by a summation of a fundamental harmonic

and pairs of space harmonics. In the first variation of the

method, the slot pitches were assumed to be sufficiently

small compared with the wavelen@h, so that higher order

TE.~ and TM.~ evanescent waves in the slots could be

neglected [4], [5]. In more exact analyses, these slot modes

are included [1], [6], [7]. The optim~um combination for the

numerical calculations is reached when the number of slot

mode pairs equals that of the spaloe harmonic pairs. Usu-

ally three pairs are sufficient in order to have an accept-,

able accuracy.

If the space harmonics are neglected, one obtains a

modified surface impedance model with certain coeffi-

cients which include the information of the corrugation

geometry. This model predicts the propagation perfor-

mance of a guide very accurately, particularly for the basic

HEII mode, as is shown graphically in [7]. The effect of

space harmonics manifests itself mainly in the cross-polar

radiation behavior of the horn: the peak cross-polar level

rises and the frequency at which the minimum cross-polar

level occurs is lowered when harmonics are taken into

account [1], [6], [7].

A different approach to handle corrugated waveguides

relies on the theory of nonstandard eigemmlues and varia-

tional principles introduced in [8]. The eigenvalue parame-

ter is the boundary susceptance of the corrugated surface.

The resulting simple functional was shown to give accurate

dispersion relations for air-filled single-depth corrugated

guides. The method was then applied to a dielectrically

loaded waveguide, which because (of the simple fabrication

technique can be used instead of the air-filled counterpart.

It was shown that the variational method can be success-

fully applied also for the corrugated guide with the dielec-

tric insert.

In this report, this method is extended to dual-depth and

tridepth corrugated waveguides. ?doth geometries are ana-

lyzed with and without a dielectic load. The waveguide is

assumed to be straight. Section II discusses geometry,

stationary functional, trial fields, eigenvalue equations,

and surface impedance formulas of the multidepth corru-

gated guide. In Section 111 dispersion curves obtained by

the variational method am depicted and results are com-

pared with those calculated by other methods. Section IV

applies the theory to a dielectricall y loaded waveguide, and

Section V contains the conclusion of the present work.
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Fig. 1. Dielectrically loaded (a) dual-depth aud (b) tridepth corrugated
wave-guides.

II. TFIE MULTIDEPTH CORRUGATED WAVEGUIDES

Consider a multidepth corrugated waveguide which is

uniform in the axial z direction and possibly filled with a

dielectric medium E(p) which can be homogeneous or

nonhomogeneous. The surface of the waveguide consists of

adjacent slots whose depth varies in series, The cross

section of the guide with two or three different slot depths

in a single corrugation period is shown in Fig, 1. The inner

radius of the guide is denoted by c, a is the radius mea-

sured to the ridge, with width t,d is the width of the slot,

and bl and b2 (or bq] are the radii of the deeper and

shallower (or shallowest) slots, respectively.

A. A Stationary Functional for the Boundary Susceptance

If the field solutions are written as E(p) e ‘J~z and

R(p) e-Jflz and transversal fields are eliminated, the follow-

ing stationary functional for the boundary admittance Y,,

or for the boundary susceptance B., of the transversely

corrugated waveguide can be derived [8]:

—ce2— 1ph’ dS= jB~. (1)

Here, k:(p) = Q’p(p)c(p) – /32, with w the angular fre-

quency and ~ the propagation factor. The surface integral

is taken over the cross section of the guide to the corruga-

tion boundary, and the contour integral goes along that

boundary. The functional can handle circular cross sec-

tions as well as cross sections of arbitrary shape.

This is the basic equation in our analysis. To apply it,

we have to insert suitable trial functions for the fields e

and h, from which the expression for the surface admit-

tance can be calculated. In a corrugated waveguide the

latter can be approximated by certain formulas. This and

trial field choices are discussed in the following subsec-

tions.

B. Trial Fields

Consider an empty air-filled multidepth corrugated

waveguide where the dielectric insert has ~, = 1.0 in Fig. 1.

In the following we assume that all slots and ridges have

the same widths d and t,respectively. This assumption can

be justified by an easier fabrication technique.

In a space-harmonic formulation, the longitudinal elec-

tric and magnetic fields in the circular corrugated wave-

guide for ps a are [1], [4]-[7]

e= f C~Z~~(kC~p)cosn+e-jpNz (2)
N=– K

K

h = ~ DNZ~~(kCNp) sin n+e-fbflz (3)
N.–K

where CN and DN are arbitrary coefficients, Z. N(kCNp) =

J.(kCNp)/J.(kCNa), and (kCNp)2 = (kp)’ – (PNP)2. J.

stands for a Bessel function of the first kind of order n. In

theory K = m, but K = 1 has been found to be sufficient

for the field calculations [1], [6]. Accurate fields can be

calculated even for K = 3 [1], [6]. The propagation factor

PN = ~ + 2nN/p consists of the fundamental harmonic
term ~ and of the periodicity factor 2 mN/p, with p the

period of the corrugation. In a dual-depth waveguide p =

2d + 2t, and in a tridepth guide p = 3d + 3t (see Fig. 1).

This parameter relates the fields in one cell to those in the

next. The fields in the remaining part of the guide, in the

slot region, are now not needed because the boundary is

taken into account by a proper admittance. Next we limit

the analysis to the lowest order HEI* and EHl~ modes

whence n = 1 in (2) and (3). Since Jl(x ) is an odd polyno-

mial, physical intuition shows that trial fields in the func-

tional must be of the form

e(p, ~) = ((l–a)(p/a) +a(p/a)3)cos$ =g(p)cos@

(4)

h(p, @)= Ag(p)sin@. (5)

The parameters a and A must be determined through the

functional. Inserting (4) and (5) into (1) and requiring

dY,/dA= O and dY,/da= O gives

P 1
A =—

‘Pt UP (akC)2(6 – 4aOPt + a&t) 2a&t ‘6)

24
–l–—

3

2(kCa)2
CY=

“p’ (kCa)2-16 “
(7)

The use of these trial functions is very convenient be-

cause both parameters can be obtained analytically, and

numerical optimization routines can be totally avoided.

Since the surface admittance was chosen for the eigenvalue

parameter, optimized trial fields do not depend on the

particular surface corrugation, and the fields (4) and (5)

together with their optimized parameters can be applied in

connection with any kind of corrugation geometry.
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There is one additional advantage in using the above

trial fields. If we demand that a= O,insert the fields in the

functional, and carry out the calculations, the dispersion

relation is seen to be solved analytically [8]:

/

pa= ((~a)2-4)((ka)2+4k@t-4)

ka(ka+4qB,)
(8)

Again, the application of this formula is not limited to a

particular boundary susceptance.

C. Space Harmonic and Surface Impedance Formulas

The eigenvalue equation of the air-filled corrugated

waveguide can be derived by matching the fields in the

central region to the fields in the slots at the common

boundary p = a. If the widths of the slots are much smaller

than the wavelength, i.e., d <<A, only the lowest order

TMIO mode is required in the slot. This assumption simpli-

fies the eigenvalue equation into the following form [1],

[3]-[5]:

n2(~a)2 _ (kCOa)2

k.Oaz&(k.Oa)- Yd
(ka)2(kCoa)Z;o( kCoa) - ka

(9)

w~th k~o=k2–/32. The prime denotes the first derivative

mth respect to the argument. Yd stands for the equivalent

admittance of the corrugated surface. It is related to the

surface admittance Y, and to the susceptance B, by the

relations Y, = jB, = j Y~/ q with q = ~. For the exact

equation, all TE~~ and TMH~ standing waves in the slots

are required. The eigenvalue equation would then be of a

determinant type and must be solved iteratively [1], [6], [7].

When considering the most important HEII and EHIZ

modes, the influence of these higher order slot modes is

concentrated in the regions near the high-frequency cutoff

point in the dispersion diagram for the HEII mode and in

the region of the short-circuit condition for the EH12 mode

[7]. The high-frequency condition appears when the pa-

rameter /la tends to infinity or, more exactly, ~p equals r.

This happens in the unimportant slow-wave part of the

dispersion diagram, far from the balanced frequency points.

At the short-circuit condition the equivalent impedance is

zero. In addition, the slot modes also have an effect on the

cross-polarization performance of the guide, a subject

which is beyond the scope of this study. Thus this simpli-

fied space-harmonic analysis is well motivated when only

the dispersion characteristics of the basic HE1l mode are

of concern.

The formula for the equivalent admittance is given in

[5]. Here we write it in a form where the fundamental

admittance component y. is separated from the terms ykl

and yk2 related to the higher order harmonics:

‘d=yO+.)’/zl+~h2> (lo)

where

pl

[1

2Y1Y2
ye=_= —

zd so YI + Y2

1 (YI-Y2)2 1
Ykl= – Xwsl (Yl+ y’) —

[

2d
J)l + Y2 – ~ Wsl 1

and

K

W,l = ~ s; ‘a ‘FN[l-(-1)A7]
~a.K (kC~a)
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(11)

(12)

(13)

(14)

K

w,’ = ~ s; ‘a ‘F~[l+(--l)N]
~G_K (kcNa)

(N#O)

(15)

n2(/3Na)2
F~ = kC~aZ&(kC~a) –

(ka)2kC~aZ&(kc~a)
(16)

S~ = sin(~~d/2)/(~Nd/2) (17)

J;(ka)YH(kb, )–Yl(ka)J~(kb, )

‘z= J~(ka,)Y~(kb,) –Y~(ka)J~(kb, ) ‘
i=l,2. (18)

Here Y. is a Bessel function of the second kind of order n.

In realistic corrugated waveguides the period of the corru-

gation is normally much smaller than the wavelength or

the radius of the guide, i.e., p << A and a. Thus, if we

assume as in [4] that /3N = 2N7r/p, kN = jl~~l, and

Z~N(k~a) = – j, the series terms can be simplified:

(19)

These expressions are easier to compute than those in (14)

and (15).

Terms yl and y2 can be interprel.ed as equivalent admitt-

ances of the two slots. ln fact, y,, or y,, is the exact TEM

admittance formula, which is a good approximation for the

single-depth corrugated surface if the period of the corru-

gation is small enough.

The surface impedance formulation applies to (11) only.

ln its traditional form [3] t/d= O is assumed, indicating

infinitely thin corrugations. Also sin ( ~d/2) = /3d/2,

whence the term in front of the parenthesis in (11) approx-

imately equals to 1. The coefficient 2 remains so the

equivalent admittance of the corrugation is seen to be

twice the series admittance of the slots. The equivalent

admittance y, of a single slot, whose depth is b, – a, can be
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Fig. 2. Dispersion curve for an empty dual-depth corrugated wave-

guide. The parameters are a/bl = 0.837, a/b2 = 0.785, t/d= 0.15,
and d/a = 0.10. The batanced frequencies are marked by the spots.

The solid line refers to the surface impedance method (eqs. (9)-(11)),

the dashed tine refers to the variational method with the cubic test
function and the optimized parameters, (eqs. (l), (4)-(7)). The dotted

line refers to the analytical equation (8).

approximated by the following formula [8]:

Yi=~Bs= –cOt(k(bi–~))+& (21)
.

which is valid for large ka values. In the limit ka >>1 the

latter term in the formula can be neglected. If k(bi – a) is

small enough, we obtain another approximation for the

admittance. In this paper (21) is applied in all variational

calculations.

In the above analysis we have considered the dual-depth

corrugation. If the corrugation consists of more adjacent

dots, the equivalent admittance can be formed by the

series connection of the single-slot admittances.

HI. NU~MCAL RESULTS

To verify the method for multidepth corrugations we

have analyzed dual-depth and tridepth geometries. The

analysis includes dispersion properties of such guides with-

out handling co- and cross-polarization radiation patterns,

which are well treated by the space-harmonic methods and

by the Fourier’ transform technique. The accuracy of the

present theory is studied by comparing the results with
those obtained by using the space-harmonic and surface

impedance formulas.

A. A Dual-Depth Corrugated Waveguide

Two different corrugation geometries were considered.

In the first example the depths of the slots were a/bl =

0.837 and a/b2 = 0.785. This combination corresponds to

the frequency band ratio 1:1.406 with the balanced fre-

quencies at ka = 8.4123 and at ka = 6.0901. In the second

example these figures were a /bl = 0.837 and a /bz =

0.71969, the frequency band ratio was 1:2, and the bal-

anced frequency points were at ka = 8.4123 and ka =

4.3979. The corrugation parameters were chosen as t/d=

ka

Fig. 3. Same as in Fig. 2 for a/bl = 0.837 and a/b2 = 0.71969.

0.15 and d/a = 0.10, which could be realistic values. For

example if a = 40 mm we had d = 4 mm and t= 0.6 mm.

Dispersion curves can now be obtained by inserting fields

(4) and (5) with (6) and (7) into (l). Figs. 2 and 3 show

show the results for both guides. The solid curve refers to

the surface impedance method (9) and (10) with (11)) and

the dashed and dotted lines refer to the variational method

with the cubic and the linear test functions, respectively.

The mode designation is that given in [1]. The HEII mode

has two branches: the first from the low-frequency cutoff

to the point ~/k= 1 and the second from the high-

frequency part down to the EHIZ mode cutoff. The bal-

anced frequencies are marked in both figures. The func-

tional equation with the cubic trial fields is seen to follow

the surface impedance curve very closely, except near the

EHIJ low-frequency cutoff, where the former predicts a

cutoff point too high. The analytical dispersion formula (8)

is most accurate when the ~/k = 1 curve is approached.

To obtain concrete values of the accuracy we have

calculated normalized propagation ~ a at different normal-

ized frequency points ka in Table I. The geometry of the

guide is that of the second example given above. The ka

values are taken so that ka = 2.5–3 are from the EHII

mode, ka = 4.3979–6.2 are from the HEII–EH12 mode,

and ka = 6.5–10 are from the EH12 –HEII mode.

From Table I we find that the variational method with

the linear test function (column A) is most inaccurate with
the error in the dispersion relation ranging from a few

percent to tens of percent. On the other hand, it is the only

method which gives an analytical eigenvalue equation and

thus is very easy to apply. The variational functional with

the cubic test function, column B, seems to work very well

in the whole region, except at the values near the EHIZ

mode high- and low-frequency cutoffs. The accuracy would

probably have been better if instead of (21) we had used

(18) for the single slot admittance. However, (21) does not

include special functions, which in some cases can be

advantageous. Column C represents the traditional surface

impedance method introduced in [3]. When these results

are compared with those from the space-harmonic analysis



OKSANEN: VARIATIONAL ANALYSIS OF MULTIDEPTH CORRUGATED WAVEGUIDES 195

TABLE I

VALUES OF THE NORMALIZED PROPAGATION PARAMSTER /?a FOR DIFFERRNT VALUES OF THE NORMALIZED FREQUENCY ka
AND THE CORRESPONDING ERROR IN PERCENT

A B c D E

z

F

ka ~a % flu % @a % j3a % ~a % pa

2.5 1.8375 -8.304 2.0149 .549 2.079 3.748 1.9997 -.210 2.005 .055 2.0039

3.0 3.3892 7.301 3.1883 .940 3.373 6.788 3.126 -1.032 3.1648 .196 3.1586

4.3979 3.5154 -6.351 3.7343 -.519 3.7246 -.778 3.7246 -.778 3.7590 .139 3.7538

5.5 5.0806 -4.995 5.1477 -3.741 5.1245 -4.174 $ 5.1313 -4.047 5.670 .361 5.3477

6.2 7.099 -14.099 6.5205 -21.10 6.6531 19.495 6.4383 -22.09 7.9057 -4.338 8.2642

6.5 4.6673 -21.98 5.9026 -1.133 5.9291 -.888 5.8980 .1.408 5.9816 -.010 5.9822

8.4123 7.9389 -1.792 8.0662 -.218 8.0664 .215 8.0664 -.215 8,0808 -.037 8.0838

10. 9.6628 -2.452 9.7381 -1.692 9.7330 1.743 9.7376 -1.726 9.7970 -1.097 9.9057

The waveguide is a dual-depth corrugated guide with the parameter values a/bl = 0.837, a/b2 = 0.71969, t/d= 0.15, and

d/a = 0.10. The balanced frequencies are at ka = 4.3979 and at ka = 8.4123. Columns A and B refer to the variational resnlts with

the linear test function (eq. (8)) and with the cubic test function, respectively. Columns C and D refer to the surface impedance
method (eqs. (9)–(11)), where in column C the term in front of the parenthesis in (11) is marked as 1 [3], and in column D eq. (11) is
directly applied. Columns E and F refer to the space-harmonic analysis (eqs. (9)-(20)). The results in column E are obtained from the

approximations (19) and (20) with K =17. Column F has been calculated by using (14) and (15) With K =8.

with only the fundamental component included (column

D), one finds that the former is in some parts of the

dispersion curve even more accurate than the latter. The

approximation made in column C can be adequately justi-

fied when the corrugation is dense enough, in which case

these two columns should give results very much alike. The

assumption of the dense corrugation is also made in col-

umn E. Again, if the slots and the ridges are very thin, the

error should be very small. Column F has been calculated

from the space-harmonic equations. These results differ

from the exact space harmonic analysis, which includes the

slot modes, only in the regions near the high-frequency

cutoff and near the short-circuit condition of the EH12
mode [7]. Some estimates for the accuracy are given in [9]

for the single-depth guide and for the HEII mode. The

difference between the high-frequency ka values of the

surface impedance model and those of the exact space-

harmonic model has been calculated to be over 12 percent

for the single-depth guide with a /bl = 0.6. At the low-

frequency cutoff this error is at most 2 percent in the range

0.5 s a/bl <0.8. The error is larger in the high-frequency

cutoff because here there is equal power in the fundamen-

tal and K = – 1 harmonics [7], [9]. Table I has been

constructed for a certain corrugation geometry. If the

corrugation were still denser, the errors would be smaller

in all columns. Table I can be used to estimate the error in

further calculations where the waveguide consists of a more

complicated geometry or is partly filled with a dielectric

material.

B. A Tridepth Corrugated Waveguide

The geometry of a tridepth corrugated waveguide is

shown in Fig. l(b). This waveguide could be used in

applications where ideal characteristics are required in

three different frequency bands. As in the dual-depth case,

we assume the slots and ridges to have constant width. The

equivalent admittance y. of the fundamental component is

now

Y1Y2Y3
Ye=!:

d SO ylyz + yzy~ + yly~
(22)

0~

I
-’

0~ a/bx = 0.6974

0 a/’bt = 0.7850

/

....””’HEII
m

a/bl = 0.8456
0 HEI, /“”””~

I ////’

ii4uL
O12345~; A910

L’.....>,HE12

ko

Fig. 4. Dispersion curve for an empty tridepth corrugated waveg~de.

The parameters are a/bl = 0.8457, a/bZ! = 0.785, a/b3 = 0.6974, t/d

= 0.15, and d/a= 0.10. The balanced frequencies are marked by the
spots. The solid line refers to the.surface impedance method (eqs. (9)
and (22)), the dashed line refers to the variational method with the
cubic test function aud the optimized parameters (eqs. (l), (4)–(7)).
The dotted line refers to the analytical equation (8).

and when this is substituted in the eigenvalue equation (9),

an approximative dispersion curve of the guide is obtained.

The corrugation period equals p = 3t + 3d. The single ad-

mittance can be calculated from (18) by inserting given

geometrical values. The dispersion relation of the tridepth

guide with the combination a/bl:= 0.6974, a/b2 = 0.785,
and a /bq = 0.8456 is considered. This corresponds to the

frequency ratio 1:1.584:2.376 and to the frequencies 12.5

GHz, 19.8 GHz, and 29.7 GHz which are taken from

satellite propagation experiments. The exact balance fre-

quencies were calculated to be at ka = 3.9889, 6.0901, and

8.9477. The other parameters were t/d = 0.15 and d/a=

0.10. Assuming that there are three slots per wavelength at

the highest frequency, i.e., A/(t + d) = 3, we have t= 0.4

mm and d = 2.9 mm. On the other hand, in order to

obtain an acceptable cross-polarization level, this number

should be at least 7 [1]. Then, .t‘=0.2 nun and d =1.25
mm, values which it may still be possible to realize.

The eigenvalue equation of the guide is plotted in Fig. 4,

where the solid curve stands for the eigenvalue equation
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(9) and for (22). The dashed and the dotted lines indicate
the variational results of the analytical equation (8) and of

the functional with the cubic test function and optimized

parameters. The admittance of the single slot is approxi-

mated by (21). The HEII dispersion curve now has three

different branches, because the short-circuit boundary con-

dition, where the combination of the slots appears to act as

a smooth-wall waveguide, occurs at two points where the

denominator in (22) equals zero. These points, ka = 4.6072
and 7.2081, lie between the balanced frequencies, marked

as spots in Fig. 4. The variational method works well

again, except near the low frequency cutoff of the HE12

mode.

N. IXELECTRICALLY LOADED

CORRUGATED WAVEGUIDES

Here we apply the variational functional (1) for a corru-

gated waveguide which is partly filled with a dielectric

material. The idea of this structure emerges from a tedious

and costly fabrication of the corrugated waveguide. Nor-

mally one has to fabricate the guide by carefully lathing

the metal pipe from the inside. If the corrugation is very

dense, as is the case in, e.g., satellite communications and

millimeter-wave remote sensing applications, the widths of

the slots and the ridges are of the order of 1 mm or even

less. Then it is often very difficult to move the cutter of the

lathe from one slot to the other so that the ridge between

the slots is not bent. In addition, metal chips may remain

in the slot, which then cause short circuits. As a result, the

corrugation geometry is not the one required, and the

performance of the guide falls off. These difficulties can be

avoided by using a different fabrication method: a dielec-

tric rod is put in the lathe, grooves are made on the

outside, and the outer surface is metallized. Finally, a hole

is drilled on the axis, and a dielectrically loaded corrugated

waveguided is finished. This idea was suggested by Prof.

Tiuri, and such a waveguide possessing a single-depth

corrugation was analyzed by the present variational method

by Linden et al. [8]. They showed that in the limit case

where the dielectric insert covers only the corrugation,

dielectric losses are less that 10 percent from conductor

power losses at 10 GHz. The corrugation parameters were

d/(d– a) <0.5 and (b– a)/A <0.1.

Dispersion relations for the dielectrically loaded dual-

depth and tridepth guides are given in Figs. 5, 6, and 7.

The curves have been calculated by applying the func-

tional (1) with the cubic test functions (4) and (5) and the

admittance formulas (11) and (22). The equivalent admit-

tance for a single slot has been approximated by (21). The

magnetic field coefficient A in (5) can again be optimized

analytically, although the result is much more complicated

than that for the empty guide (eq. (6)). The parameter a

must now be determined by a numerical routine.

The results for the dual-depth guide are shown as a

function of /3/k for different ka values and for three

values of the thickness of the ldading layer: c/a = 0.95,

0.90, and 0.80. Also,’ t/d = 0.15 and d/a= 0.10. The

dielectric insert is Teflon with c, = 2.08. At higher frequen-

t/a = .95----------

EH1l

1

c/a = .90—.—- & = 2.08

c/a = .80 ... . . . . ..
a/’b, = 0.837

krt = 3.0

ka = 2.5

:Ek”=20
0.4 0.5 0.8 0.8 0.9 1

i%

Fig. 5. Uniform dispersion curves of the EH1l mode in a dieleetrically
loaded dual-depth corrugated guide. The curves have been evaluated by
the variational functional (1) with the cubic test functions (4)–(7) for
three different dielectric layer thicknesses c/a. The dielectric insert is
Teflon with c,= 2.08. t/d = 0.15 and d/a= 0.10.
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ties in Fig. 6 tlie

-r
1

Same asin Fig. 5 for the HEII mode.

curve becomes more and more vertical,

which indicates that here the dispersion curve has a weaker

dependence on the dielectric insert and on the corrugation

geometry. This means also that Figs. 2 and 3 serve for the

dielectrically loaded guide, at least in the region of large

ka values. In Fig. 7 the dispersion curves of the tridepth

guide with the dielectric load are plotted. For comparison,

the dispersion curves of the empty guide are also shown.

The thickness parameter c/a is now 0.95 and the dielectric

load is again Teflon. The corrugation parameters are those

of the empty guide. The dispersion curves follow very

closely the empty guide curves in the regions of interest.
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dispersion characteristics were calculated. Finally, the

0‘{qb2 = 0.7850

/

method was used to analyze a dielectrically loaded corru-
rn
0

C!/b, = 0.8456 gated guide, a component which may be realistic because.-rn-
0~

0
ti -

~o
Qm-

0
*-

0
ti-

0~

0
<

0. -
0

, I , *

Ht.

—
0123456j EgIO

ka

Fig. 7. Dispersion curve for an empty (solid line) and for a dielectn-
cally loaded (dashed line) tridepth corrugated waveguide. The geomet-
rical parameters are a/bl = 0.8456, a/bz = 0.785, a/b3 = 0.6974, t/d

= 015, d/a = 0.10, and c/a= 0.95. The dielectric insert is Teflon
with c, = 2.08. The curves have been calculated by the variational

functional (1) with the cubic test functions (4) and (5).

V. CONCLUSION

The nonstandard variational method was applied to the

dielectrically loaded multidepth corrugated waveguide. The

method was first, tested for the empty dual-depth guide,

where by using simple linear and cubic test functions with

few optimizable parameters, accurate dispersion curves

were obtained. The linear test function led to an analytical

dispersion formula which is very easy to use compared

with all other methods available in the literature. The

cubic test function was seen to give more accurate results

and was attractive because all parameters in the test func-

tion coi.dd be optimized analytically. The variational re-

sults were compared with the results obtained by the

surface impedance and by space-harmonic methods. A

new corrugated waveguide whose corrugation period con-

sists of three different slot depths was introduced and its

of its easier fabrication technique.
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