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Variational Analysis of Dielectrically Loaded
Multidepth Corrugated Waveguides

MARKKU 1. OKSANEN

Abstract —The propagation behavior in a multidepth corrugated wave-
guide is analyzed. The analysis is based on the theory of nonstandard
eigenvalues and variational methods. This method is tested for an empty
dual-depth corrugated guide, the results of which have been previously
calculated in the literature by using surface impedance and space harmonic
methods. These methods are summarized here. Also, space harmonic
formulas are rederived in the form where the fundamental surface admit-
tance component is separated from the higher order terms. It is seen that,
with elementary trial functions, very accurate dispersion relations can be
obtained by the variational method. Encouraged by this, the method is then
extended for a tridepth guide operating in three different frequency bands,
and for dielectrically loaded dual- and tridepth guides. The latter compo-
nents may hold considerable promise because of their simpler fabrication
technique.

I. INTRODUCTION

INGLE- AND dual-depth corrugated horns or wave-

guides have found applications in cases where pattern
symmetry related to low cross-polarization is required. In a
single-depth horn, these characteristics can be realized at a
certain frequency band around the balanced frequency of
the horn. At that frequency the depth of the corrugation
slot is approximately a quarter of the wavelength. When
the corrugation consists of two different slot depths, i.e. a
dual-depth horn, these requirements can be met in two
separate frequency bands. The ratio of the depths of the
two slots, and hence the ratio of the operating bands, can
vary between 1:1.3 and 1:2.0 [1].

Since the invention of the dual-depth corrugated guide,
various theoretical methods have been introduced to ana-
lyze wave propagation and radiation characteristics of such
a horn. The first one [2] is based on an average wall
admittance, an assumption which can be justified as an
approximation if the depths of the slots do not differ much
from each other. In this method, relation between the
fields in the adjacent slots are not taken into account. This
is valid also for the surface impedance method, which
assumes infinitely thin corrugations [3]. Including field
coupling between the slots and realistic corrugation dimen-
sions requires a space harmonic analysis [1], [4]-[7]. In this
method the fields in the central propagation region are
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represented by a summation of a fundamental harmonic
and pairs of space harmonics. In the first variation of the
method, the slot pitches were assumed to be sufficiently
small compared with the wavelength, so that higher order
TE,,, and TM,,, evanescent waves in the slots could be
neglected {4], [5]. In more exact analyses, these slot modes
are included [1], [6], [7]. The optimum combination for the
numerical calculations is reached when the number of slot
mode pairs equals that of the space harmonic pairs. Usu-
ally three pairs are sufficient in order to have an accept-.
able accuracy.

If the space harmonics are neglected, one obtains a
modified surface impedance model with certain coeffi-
cients which include the information of the corrugation
geometry. This model predicts the propagation perfor-
mance of a guide very accurately, particularly for the basic
HE,, mode, as is shown graphically in {7]. The effect of
space harmonics manifests itself mainly in the cross-polar
radiation behavior of the horn: the peak cross-polar level
rises and the frequency at which the minimum cross-polar
ievel occurs is lowered when harmonics are taken into
account [1], [6], [7].

A different approach to handle corrugated waveguides
relies on the theory of nonstandard eigenvalues and varia-
tional principles introduced in [8]. The eigenvalue parame-
ter is the boundary susceptance of the corrugated surface.
The resulting simple functional was shown to give accurate
dispersion relations for air-filled single-depth corrugated
guides. The method was then applied to a dielectrically
loaded waveguide, which because of the simple fabrication
technique can be used instead of the air-filled counterpart.
It was shown that the variational method can be success-
fully applied also for the corrugated guide with the dielec-
tric insert.

In this report, this method is extended to dual-depth and
tridepth corrugated waveguides. Both geometries are ana-
lyzed with and without a dielectric load. The waveguide is
assumed to be straight. Section II discusses geometry,
stationary functional, trial fields, eigenvalue equations,
and surface impedance formulas of the multidepth corru-
gated guide. In Section III dispersion curves obtained by
the variational method are depicted and results are com-
pared with those calculated by other methods. Section IV
applies the theory to a dielectrically loaded waveguide, and
Section V contains the conclusion of the present work.
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Fig. 1. Dielectrically loaded (a) dual-depth and (b) tridepth corrugated
wave-guides.

II. Tt MULTIDEPTH CORRUGATED WAVEGUIDES

Consider a multidepth corrugated waveguide which is
uniform in the axial z direction and possibly filled with a
dielectric medium ¢(p) which can be homogeneous or
nonhomogeneous. The surface of the waveguide consists of
adjacent slots whose depth varies in series. The cross
section of the guide with two or three different slot depths
in a single corrugation period is shown in Fig, 1. The inner
radius of the guide is denoted by c, a is the radius mea-
sured to the ridge, with width ¢, d is the width of the slot,
and. b, and b, (or b;) are the radii of the deeper and
shallower (or shallowest) slots, respectively.

A. A Stationary Functional for the Boundary Susceptance

If the field solutions are written as E(p)e ™ and
H(p)e 7% and transversal fields are eliminated, the follow-
ing stationary functional for the boundary admittance Y,
or for the boundary susceptance B,, of the transversely
corfugated waveguide can be derived [8]:

—ee’ — uhz] ds=jB,. (1)

Here, k2(p) = w’u(p)e(p)— B2, with w the angular fre-
quency and B the propagation factor. The surface integral
is taken over the cross section of the guide to the corruga-
tion boundary, and the contour integral goes along that
boundary. The functional can handle circular cross sec-
tions as well as cross sections of arbitrary shape.

This is the basic equation in our analysis. To apply it,
we have to insert suitable trial functions for the fields e
and A, from which the expression for the surface admit-
tance can be calculated. In a corrugated waveguide the
latter can be approximated by certain formulas. This and
trial field choices are discussed in the following subsec-
tions.
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B. Trial Fields

Consider an empty air-filled multidepth corrugated
waveguide where the dielectric insert has €, =1.0 in Fig. 1.
In the following we assume that all slots and ridges have
the same widths d and ¢, respectively. This assumption can
be justified by an easier fabrication technique.

In a space-harmonic formulation, the longitudinal elec-
tric and magnetic fields in the circular corrugated wave-
guide for p < a are [1], [4]-{7]

K ,
e= Y CyZ,y(k.yp)cosnpe v
N=-K

()

K
Y. DyZ,y(kyp)sinnge v (3)
N=—K

h=

where Cy and D, are arbitrary coefficients; Z, (k. yp) =
T (kop) /T, (k). and (kyp)? = (kp)® = (Byp)> J,
stands for a Bessel function of the first kind of order n. In
theory K = o0, but K =1 has been found to be sufficient
for the field calcilations [1], [6]. Accurate fields can be
calculated even for K = 3 [1], [6]. The propagation factor
By=B+27N/p consists of the fundamental harmonic
term B and of the periodicity factor 2#N/p, with p the
period of the corrugation. In a dual-depth waveguide p =
2d +2t, and in a tridepth guide p =3d + 3¢ (see Fig. 1).
This parameter relates the fields in one cell to those in the
next. The fields in the remaining part of the guide, in the
slot region, are now not needed because the boundary is
taken into account by a proper admittance. Next we limit
the analysis to the lowest order HE;,, and EH,,, modes
whence n =1 in (2) and (3). Since J;(x) is an odd polyno-
mial, physical intuition shows that trial fields in the func-
tional must be of the form

e(p,9) = ((1-a)(p/a) +a(p/a)’)coss = g(p)cos s
4)
h(p,¢)=Ag(p)sing. (5)

The parameters a and A4 must be determined through the
functional. Inserting (4) and (5) into (1) and requiring
dY, /0A=0and dY, /da=0 gives

B 1
A= — - (6
P op (akc)2(6—4(xopt+(xgpt) ) 2ongpt ©)
24 3
2}(kca)2

(7)

Qg =5 .
P (k,a)’-16

The use of these trial functions is very convenient be-
cause both parameters can be obtained analytically, and
numerical optimization routines can be totally avoided.
Since the surface admittance was chosen for the eigenvalue
parameter, optimized trial fields do not depend on the
particular surface corrugation, and the fields (4) and (5)
together with their optimized parameters can be applied in
connection with any kind of corrugation geometry.
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There is one additional advantage in using the above
trial fields. If we demand that a = 0, insert the fields in the
functional, and carry out the calculations, the dispersion
relation is seen to be solved analytically [8]:

(8)

ka(ka +47B,)

Baz\/((ka)f—4)((ka)2+4kan3s—4)

Again, the application of this formula is not limited to a
particular boundary susceptance.

C. Space Harmonic and Surface Impedance Formulas

The eigenvalue equation of the air-filled corrugated
waveguide can be derived by matching the fields in the
central region to the fields in the slots at the common
boundary p = a. If the widths of the slots are much smaller
than the wavelength, ie.,, d << A, only the lowest order
TM,, mode is required in the slot. This assumption simpli-
fies the eigenvalue equation into the following form [1],

[31-[5]:

n*(Ba)’
(ka)2(kcoa)Z,fO(kcoa)

(kc()a)2
" ka 4

()

chaZ,io(kcoa) -

with k2 = k? — B2 The prime denotes the first derivative
with respect to the argument. Y, stands for the equivalent
admittance of the corrugated surface. It is related to the
surface admittance Y, and to the susceptance B, by the
relations Y, = jB =jY,/n with g =\/,1T/7 . For the exact
equation, all TE,,, and TM,,, standing waves in the slots
are required. The eigenvalue equation would then be of a
determinant type and must be solved iteratively [1], [6], [7].
When considering the most important HE,;, and EH,,
modes, the influence of these higher order slot modes is
concentrated in the regions near the high-frequency cutoff
point in the dispersion diagram for the HE,; mode and in
the region of the short-circuit condition for the EH,, mode
[7}. The high-frequency condition appecars when the pa-
rameter Ba tends to infinity or, more exactly, Bp equals 7.
This happens in the unimportant slow-wave part of the
dispersion diagram, far from the balanced frequency points.
At the short-circuit condition the equivalent impedance i$
zero. In addition, the slot modes also have an effect on the
cross-polarization performance of the guide, a subject
which is beyond the scope of this study. Thus this simpli-
fied space-harmonic analysis is well motivated when only
the dispersion characteristics of the basic HE;; mode are
of concern.

The formula for the equivalent admittance ig given in
[5]. Here we write it in a form where the fundamental
admittance component y, is separated from the terms y,;
and y,, related to the higher order harmonics:

(10)

Y=Y+ yut Vs

where
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Sy =sin(Byd/2)/(Byd/2) )
Ji(ka) Y, (kb) = Yy (ka) LKD) g

57T (ka) Y, (kb,)— Y, (ka) J,(ib,) °

Here Y, is a Bessel function of the second kind of order ».
In realistic corrugated waveguides the period of the corru-
gation is normally much smaller than the wavelength or
the radius of the guide, i.e., p <A and a. Thus, if we
assume as in [4] that By =2Nwn/p, k,=j|By, and
Z,y(kya) = — j, the series terms can be simplified:

___11 f sin® (Nwd /p) . n®
Wa= v (NW"/P)2 (ka)2
1
(1-(-D") % (19)
_2p K sin’ (2N7d/p) n? l
P TN B e /) (ka)z)N' )

These expressions are easier to compute than those in (14)
and (15).

Terms y, and y, can be interpreted as equivalent admit-
tances of the two slots. In fact, y,, or y,, is the exact TEM
admittance formula, which is a good approximation for the
single-depth corrugated surface if the period of the corru-
gation is small enough.

The surface impedance formulation applies to (11) only.
In its traditional form [3] ¢ /d =0 is assumed, indicating
infinitely thin corrugations. Also sin(Bd/2) = 8d /2,
whence the term in front of the parenthesis in (11) approx-
imately equals to 1. The coefficient 2 remains so the
equivalent admittance of the corrugation is seen to be
twice the series admittance of the slots. The equivalent
admittance y, of a single slot, whose depth is b, — a, can be
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Fig. 2. Dispersion curve for an empty dual-depth corrugated wave-
guide. The parameters are a/b, =0.837, a/b,=0.785, 1/d=0.15,
and d/a=0.10. The balanced frequencies are marked by the spots.
The solid line refers to the surface impedance method (egs. (9)—(11)),
the dashed line refers to the variational method with the cubic test
function and the optimized parameters, (egs. (1), (4)~(7)). The dotted
line refers to the analytical equation (8).

approximated by the lelowing formula [8]:

yimnB=—cot(k(b—a)+ (2D
which is valid for large ka values. In the limit ka >1 the
latter term in the formula can be neglected. If k(b, — a) is
small enough, we obtain another approximation for the
admittance. In this paper (21) is applied in all variational
calculations.

In the above analysis we have cons1dered the dual-depth
corrugation. If the corrugation consists of more adjacent
slots, the equivalent admittance can be formed by the
series connection of the single-slot admittances.

III. NUMERICAL RESULTS

To verify the method for multidepth corrugations we
have analyzed dual-depth and tridepth geometries. The
analysis includes dispersion properties of such guides with-
out handling co- and cross-polarization radiation patterns,
which are well treated by the space-harmonic methods and
by the Fourier transform technique. The accuracy of the
present theory is studied by comparing the results with
those obtained by using the space-harmomc and surface
1mpedance formulas.

A. A Dual-Depth Corrugated Waveguide

Two different corrugation geometries were considered.
In the first example the depths of the slots were a /b, =
0.837 and a /b, = 0.785. This combination corresponds to
the frequency band ratio 1:1.406 with the balanced fre-
quencies at ka =8.4123 and at ka = 6.0901. In the second
example these figures were a/b,=0.837 and a/b,=
0.71969, the frequency band ratio was 1:2, and the bal-
anced frequency points were at ka =8.4123 and ka=
4.3979. The corrugation parameters were chosen as ¢ /d =

o
G q .
1 abe=07197
:'. a/bi = 0.837
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o]
o
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Fig. 3. Same asin Fig. 2 for a /b, = 0.837 and a /b, = 0.71969.

0.15 and d/a = 0.10, which could be realistic values. For
example if @ =40 mm we had d =4 mm and ¢ = 0.6 mm.
Dispersion curves can now be obtained by inserting fields
(4) and (5) with (6) and (7) into (1). Figs. 2 and 3 show
show the results for both guides. The solid curve refers to
the surface impedance method (9) and (10) with (11)) and
the dashed and dotted lines refer to the variational method
with the cubic and the linear test functions, respectively.
The mode designation is that given in [1]. The HE;; mode
has two branches: the first from the low-frequency cutoff
to the point 8/k=1 and the second from the high-
frequency part down to the EH,, mode cutoff. The bal-
anced frequencies are marked in both figures. The func-
tional equation with the cubic trial fields is seen to follow
the surface impedance curve very closely, except near the
EH,, low-frequency cutoff, where the former predicts a
cutoff point too high. The analytical dispersion formula (8)
is most accurate when the 8/k =1 curve is approached.

To obtain concrete values of the accurécy we have
calculated normalized propagation Ba at different normal- -
ized frequency points ka in Table I. The geometry of the
guide is that of the second example given above. The ka
values are taken so that ka=2.5-3 are from the EH
mode, ka=4.3979-6.2 are from the HE, ~EH;, mode,
and ka = 6.5-10 are from the EH,,~-HE,; mode.

From Table I we find that the variational method with
the linear test function (column A) is most inaccurate with
the error in the dispersion relation ranging from a few
percent to tens of percent. On the other hand, it is the only
method which gives an analytical eigenvalue equation and
thus is very easy to apply. The variational functional with
the cubic test function, column B, seems to work very well
in the whole region, except at the values near the EH,,
mode high- and low-frequency cutoffs. The accuracy would
probably have been better if instead of (21) we had used

-(18) for the single slot admittance. However, (21) does not

include special functions, which in some cases can be
advantageous. Column C represents the traditional surface
impedance method introduced in [3]. When these results
are compared with those from the space-harmonic analysis
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TABLE 1
VALUES OF THE NORMALIZED PROPAGATION PARAMETER -Ba FOR DIFFERENT VALUES OF THE NORMALIZED FREQUENCY ka
AND THE CORRESPONDING ERROR IN PERCENT

A B C D E F
ka Ba % Ba % Ba % . Pa % Ba % Ba
2.5 1.8375 | -8.304 2.0149 | .549 2.079 3.748 1.9997 | -.210 2.005 .055 2.0039
3.0 3.3892 | 7.301 3.1883 | .940 3.373 6.788 3.126 -1.032 | 3.1648 | .196 3.1586
4.3979 | 3.5154 | -6.351 3.7343 | -.519 3.7246 | -.778 3.7246 | -.778 3.7590 | .139 3.7538
5.5 5.0806 | -4.995 5.1477 | -3.741 5.1245 | -4.174 | 5.1313 | -4.047 | 5.670 .361 5.3477
6.2 7.099 214.099 | 6.5205 | -21.10 | 6.6531 | 19.495 | 6.4383 | -22.09 | 7.9057 | -4.338 | 8.2642
6.5 4.6673 | -21.98 5.9026 | -1.133 5.9291 | -.888 5.8980 | -1.408 | 5.9816 | -..010 5.9822
8.4123 | 7.9389 | -1.792 8.0662 | -.218 8.0664 | .215 8.0664 | -.215 8.0808 | -.037 8.0838
10. 9.6628 | -2.452 9.7381 | -1.692 | 9.7330 | 1.743 9.7376 | -1.726 | 9.7970 | -1.097 | 9.9057

The waveguide is a dual-depth corrugated guide with. the parameter values a/b; =0.837, a/b, = 0.71969, t/d=0.15, and
d/a=0.10. The balanced frequencies are at kg = 4.3979 and at ka =8.4123. Columns A and B refer to the variational rc.:sults with
the linear test function (eq. (8)) and with the cubic test function, respectively. Columns C and D refer to _the surface 1mpedange.
method (egs. (9)-(11)), where in column C the term in front of the parenthesis in (11) is marked as 1 [3], and in column_ Deq. (11)is
direcily applied. Columns E and F refer to.the space-harmonic analysis (egs. (9)-(20)). The results in. column E are obtained from the
approximations (19) and (20) with K =17. Column F has been calculated by using (14) and (15) with K =8.

with only the fundamental component included (column
D), one finds that the former is in some parts of the
dispersion curve even more accurate than the latter. The
approximation made in column C can be adequately justi-
fied when the corrugation is dense enough, in which case
these two columns should give results very much alike. The
assumption of the dense corrugation is also made in col-
umn E. Again, if the slots and the ridges are very thin, the
error should be very small. Column-F has been calculated
from the space-harmonic equations. These results differ
from the exact space harmonic analysis, which includes the
slot modes, only in the regions near the high-frequency
cutoff and near the short-circuit condition of the EH,,
mode [7]. Some estimates for the accuracy are given in [9]
for the single-depth guide and for the HE,; mode. The
difference between the high-frequency ka values of the
surface impedance model and those of the exact space-
harmonic model has been calculated to be over 12 percent
for the single-depth guide with a /b, =0.6. At the low-
frequency cutoff this error is at most 2 percent in the range
0.5 < a/b; < 0.8. The error is larger in the high-frequency
cutoff because here there is equal power in the fundamen-
" tal and K =—1 harmonics [7], [9]. Table I has been
constructed for a certain corrugation geometry. If the
corrugation were still denser, the errors would be smaller
in all columns. Table I can be used to estimate the error in
further calcuations where the waveguide consists of a more
complicated geometry or is partly filled with a dielectric
material.

B. A Tridepth Corrugated Waveguide

The geometry of a tridepth corrugated waveguide. is
shown in Fig. 1(b). This waveguide could be used in
applications where ideal characteristics are required in
three different frequency bands. Ag in the dual-depth cage,
we assume the slots and ridges to have constant width. The
equivalent admittance y, of the fundamental component is
now :

_}_ Y12V
S02 Yty yst yiys

p
Yo = 4 (22)
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Fig. 4. Dispersion curve for an empty tridepth corrugated waveguide.
The parameters are a/b, = 0.8457, a /b, =0.785, a /b;=0.6974, t/d
=0.15, and d/a=0.10. The balanced frequencies are marked by the
spots. The solid line refers to the.surface impedance method (egs. (9)
and (22)), the dashed line refers to the variational method with the
cubic test function and the optimized parameters (egs. (1), (4)—(7)).
The dotted line refers to the analytical equation (8).

and when this is substituted in the eigenvalue equation (9),
an approximative dispersion curve of the guide is obtained.
The corrugation period equals p = 3¢ + 3d. The single ad-
mittance can be calculated from (18) by inserting given
geometrical values. The dispersion relation of the tridepth
guide with the combination a /b, = 0.6974, a /b, =0.785,
and a /b, =0.8456.1s considered. This corresponds to the
frequency ratio 1:1.584:2.376 and to the frequencies 12.5
GHz, 19.8 GHz, and 29.7 GHz which are taken from
satellite propagation experiments. The exact balance fre-
quencies were calculated to be at ka = 3.9889, 6.0901, and
8.9477. The other parameters were ¢/d = 0.15 and d/a =
0.10. Assuming that there are three slots per wavelength at
the highest frequency, ic., A /(¢ +d) =3, we have r = 0.4
mm and d=2.9 mm. On the other hand, in order to
obtain an acceptable cross-polarization level, this number
should be. at least 7 {1]. Then, = 0.2 mm and d=1.25
mm, values which it may still be possible to realize.

The eigenvalue equation of the guide is plotted in Fig. 4,
where the solid curve stands for the eigenvalue equation
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(9) and for (22). The dashed and the dotted lines indicate
the variational results of the analytical equation (8) and of
the functional with the cubic test function and optimized
parameters. The admittance of the single slot is approxi-
mated by (21). The HE,; dispersion curve now has three
different branches, because the short-circuit boundary con-
dition, where the combination of the slots appears to act as
a smooth-wall waveguide, occurs at two points where the
denominator in (22) equals zero. These points, ka = 4.6072
and 7.2081, lie between the balanced frequencies, marked
as spots in Fig. 4. The variational method works well
again, except near the low frequency cutoff of the HE,,
mode. ‘

IV. DIELECTRICALLY LOADED
CORRUGATED WAVEGUIDES

Here we apply the variational functional (1) for a corru-
gated waveguide which is partly filled with a dielectric
material. The idea of this structure emerges from a tedious
and costly fabrication of the corrugated waveguide. Nor-
mally one has to fabricate the guide by carefully lathing
the metal pipe from the inside. If the corrugation is very
dense, as is the case in, e.g., satellite communications and
millimeter-wave remote sensing applications, the widths of
the slots and the ridges are of the order of 1 mm or even
less. Then it is often very difficult to move the cutter of the
lathe from one slot to the other so that the ridge between
the slots is not bent. In addition, metal chips may remain
in the slot, which then cause short circuits. As a result, the
corrugation geometry is not the one required, and the
performance of the guide falls off. These difficulties can be
avoided by using a different fabrication method: a dielec-
tric rod is put in the lathe, grooves are made on the
outside, and the outer surface is metallized. Finally, a hole
is drilled on the axis, and a dielectrically loaded corrugated
waveguided is finished. This idea was suggested by Prof.
Tiuri, and such a waveguide possessing a single-depth
corrugation was analyzed by the present variational method
by Lindell e al. [8]. They showed that in the limit case
where the dielectric insert covers only the corrugation,
dielectric losses are less that 10 percent from conductor
power losses at 10 GHz. The corrugation parameters were
d/(d—a)<0.5 and (b—a)/A<0.1

Dispersion relations for the dielectrically loaded dual-
depth and tridepth guides are given in Figs. 5, 6, and 7.
The curves have been calculated by applying the func-
tional (1) with the cubic test functions (4) and (5) and the
admittance formulas (11) and (22). The equivalent admit-
tance for a single slot has been approximated by (21). The
magnetic field coefficient A in (§5) can again be optimized
analytically, although the result is much more complicated
than that for the empty guide (eq. (6)). The parameter «
must now be determined by a numerical routine.

The results for the dual-depth guide are shown as a
function of B/k for different ka values and for three
values of the thickness of the loading layer: ¢/a =0.95,
0.90, and 0.80. Also, t/d=0.15 and d/a=0.10. The

diclectric insert is Teflon with €, = 2.08. At higher frequen- -
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Fig. 5. Uniform dispersion curves of the EH;; mode in a dielectrically

loaded dual-depth corrugated guide. The curves have been evaluated by
the variational functional (1) with the cubic test functions (4)—(7) for
three different dielectric layer thicknesses c¢/a. The dielectric insert is
Teflon with ¢, = 2.08. 1/d =0.15 and d/a = 0.10.
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Fig. 6. Same as in Fig. 5 for the HE,; mode.

cies in Fig. 6 the curve becomes more and more vertical,
which indicates that here the dispersion curve has a weaker
dependence on the dielectric insert and on the corrugation
geometry. This means also that Figs. 2 and 3 serve for the
dielectrically loaded guide, at least in the region of large
ka values. In Fig. 7 the dispersion curves of the tridepth
guide with the dielectric load are plotted. For comparison,
the dispersion curves of the empty guide are also shown.
The thickness parameter ¢ /a is now 0.95 and the dielectric
load is again Teflon. The corrugation parameters are those
of the empty guide. The dispersion curves follow very
closely the empty guide curves in the regions of interest.
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Fig. 7. Dispersion-curve for an empty (solid line) and for a dielectri-
cally loaded (dashed line) tridepth corrugated waveguide. The geomet-

tical parameters are a/b; =0.8456, a /b, = 0.785, a /b, = 0.6974, t /d
=015, d/a=010, and ¢/a=0.95. The dielectric insert is Teflon
with ¢, =2.08. The curves have been calculated by the variational
functlonal (1) with the cubic test fanctions (4) and (5).

V. (CoNCLUSION

The nonstandard variational method was applied to the
dielectrically loaded multidepth corrugated waveguide. The
method was first tested for the empty dual-depth guide,
where by using simple linear and cubic test functions with
few optimizable parameters, accurate dispersion. curves
were obtained. The linear test function led to an analytical
dispersion formula which is very easy to use compared
with all other methods available in the literature. The
cubic test function was seen -to give more accurate results
and was attractive because all parameters in the test func-
tion could be optimized analytically. The variational re-
sults were compared with the results obtained by the
surface impedance and by space-harmonic methods. A
new corrugated waveguide whose corrugation period con-
sists of three different slot depths was introduced and its

dispersion characteristics were calculated. Finally, the
method was used to analyze a dielectrically loaded corru-
gated guide, a component which may be realistic because
of its easier fabrication technique.
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